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Abstract

Prediction tasks over nodes and edges in networks require careful effort in engineering features 

used by learning algorithms. Recent research in the broader field of representation learning has led 

to significant progress in automating prediction by learning the features themselves. However, 

present feature learning approaches are not expressive enough to capture the diversity of 

connectivity patterns observed in networks.

Here we propose node2vec, an algorithmic framework for learning continuous feature 

representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-

dimensional space of features that maximizes the likelihood of preserving network neighborhoods 

of nodes. We define a flexible notion of a node’s network neighborhood and design a biased 

random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm 

generalizes prior work which is based on rigid notions of network neighborhoods, and we argue 

that the added flexibility in exploring neighborhoods is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-of-the-art techniques on multi-label 

classification and link prediction in several real-world networks from diverse domains. Taken 

together, our work represents a new way for efficiently learning state-of-the-art task-independent 

representations in complex networks.
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1. INTRODUCTION

Many important tasks in network analysis involve predictions over nodes and edges. In a 

typical node classification task, we are interested in predicting the most probable labels of 

nodes in a network [33]. For example, in a social network, we might be interested in 

predicting interests of users, or in a protein-protein interaction network we might be 

interested in predicting functional labels of proteins [25, 37]. Similarly, in link prediction, 

we wish to predict whether a pair of nodes in a network should have an edge connecting 

them [18]. Link prediction is useful in a wide variety of domains; for instance, in genomics, 

it helps us discover novel interactions between genes, and in social networks, it can identify 

real-world friends [2, 34].

Any supervised machine learning algorithm requires a set of informative, discriminating, 

and independent features. In prediction problems on networks this means that one has to 

construct a feature vector representation for the nodes and edges. A typical solution involves 

hand-engineering domain-specific features based on expert knowledge. Even if one 

discounts the tedious effort required for feature engineering, such features are usually 

designed for specific tasks and do not generalize across different prediction tasks.

An alternative approach is to learn feature representations by solving an optimization 

problem [4]. The challenge in feature learning is defining an objective function, which 

involves a trade-off in balancing computational efficiency and predictive accuracy. On one 

side of the spectrum, one could directly aim to find a feature representation that optimizes 

performance of a downstream prediction task. While this supervised procedure results in 

good accuracy, it comes at the cost of high training time complexity due to a blowup in the 

number of parameters that need to be estimated. At the other extreme, the objective function 

can be defined to be independent of the downstream prediction task and the representations 

can be learned in a purely unsupervised way. This makes the optimization computationally 

efficient and with a carefully designed objective, it results in task-independent features that 

closely match task-specific approaches in predictive accuracy [21, 23].

However, current techniques fail to satisfactorily define and optimize a reasonable objective 

required for scalable unsupervised feature learning in networks. Classic approaches based on 

linear and non-linear dimensionality reduction techniques such as Principal Component 

Analysis, Multi-Dimensional Scaling and their extensions [3, 27, 30, 35] optimize an 

objective that transforms a representative data matrix of the network such that it maximizes 

the variance of the data representation. Consequently, these approaches invariably involve 

eigendecomposition of the appropriate data matrix which is expensive for large real-world 

networks. Moreover, the resulting latent representations give poor performance on various 

prediction tasks over networks.

Alternatively, we can design an objective that seeks to preserve local neighborhoods of 

nodes. The objective can be efficiently optimized using stochastic gradient descent (SGD) 

akin to backpropogation on just single hidden-layer feedforward neural networks. Recent 

attempts in this direction [24, 28] propose efficient algorithms but rely on a rigid notion of a 

network neighborhood, which results in these approaches being largely insensitive to 
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connectivity patterns unique to networks. Specifically, nodes in networks could be organized 

based on communities they belong to (i.e., homophily); in other cases, the organization 

could be based on the structural roles of nodes in the network (i.e., structural equivalence) 

[7, 10, 36]. For instance, in Figure 1, we observe nodes u and s1 belonging to the same 

tightly knit community of nodes, while the nodes u and s6 in the two distinct communities 

share the same structural role of a hub node. Real-world networks commonly exhibit a 

mixture of such equivalences. Thus, it is essential to allow for a flexible algorithm that can 

learn node representations obeying both principles: ability to learn representations that 

embed nodes from the same network community closely together, as well as to learn 

representations where nodes that share similar roles have similar embeddings. This would 

allow feature learning algorithms to generalize across a wide variety of domains and 

prediction tasks.

Present work

We propose node2vec, a semi-supervised algorithm for scalable feature learning in 

networks. We optimize a custom graph-based objective function using SGD motivated by 

prior work on natural language processing [21]. Intuitively, our approach returns feature 

representations that maximize the likelihood of preserving network neighborhoods of nodes 

in a d-dimensional feature space. We use a 2nd order random walk approach to generate 

(sample) network neighborhoods for nodes.

Our key contribution is in defining a flexible notion of a node’s network neighborhood. By 

choosing an appropriate notion of a neighborhood, node2vec can learn representations that 

organize nodes based on their network roles and/or communities they belong to. We achieve 

this by developing a family of biased random walks, which efficiently explore diverse 

neighborhoods of a given node. The resulting algorithm is flexible, giving us control over 

the search space through tunable parameters, in contrast to rigid search procedures in prior 

work [24, 28]. Consequently, our method generalizes prior work and can model the full 

spectrum of equivalences observed in networks. The parameters governing our search 

strategy have an intuitive interpretation and bias the walk towards different network 

exploration strategies. These parameters can also be learned directly using a tiny fraction of 

labeled data in a semi-supervised fashion.

We also show how feature representations of individual nodes can be extended to pairs of 

nodes (i.e., edges). In order to generate feature representations of edges, we compose the 

learned feature representations of the individual nodes using simple binary operators. This 

compositionality lends node2vec to prediction tasks involving nodes as well as edges.

Our experiments focus on two common prediction tasks in networks: a multi-label 

classification task, where every node is assigned one or more class labels and a link 

prediction task, where we predict the existence of an edge given a pair of nodes. We contrast 

the performance of node2vec with state-of-the-art feature learning algorithms [24, 28]. We 

experiment with several real-world networks from diverse domains, such as social networks, 

information networks, as well as networks from systems biology. Experiments demonstrate 

that node2vec outperforms state-of-the-art methods by up to 26.7% on multi-label 

classification and up to 12.6% on link prediction. The algorithm shows competitive 
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performance with even 10% labeled data and is also robust to perturbations in the form of 

noisy or missing edges. Computationally, the major phases of node2vec are trivially 

parallelizable, and it can scale to large networks with millions of nodes in a few hours.

Overall our paper makes the following contributions:

1. We propose node2vec, an efficient scalable algorithm for feature learning 

in networks that efficiently optimizes a novel network-aware, 

neighborhood preserving objective using SGD.

2. We show how node2vec is in accordance with established principles in 

network science, providing flexibility in discovering representations 

conforming to different equivalences.

3. We extend node2vec and other feature learning methods based on 

neighborhood preserving objectives, from nodes to pairs of nodes for 

edge-based prediction tasks.

4. We empirically evaluate node2vec for multi-label classification and link 

prediction on several real-world datasets.

The rest of the paper is structured as follows. In Section 2, we briefly survey related work in 

feature learning for networks. We present the technical details for feature learning using 

node2vec in Section 3. In Section 4, we empirically evaluate node2vec on prediction tasks 

over nodes and edges on various real-world networks and assess the parameter sensitivity, 

perturbation analysis, and scalability aspects of our algorithm. We conclude with a 

discussion of the node2vec framework and highlight some promising directions for future 

work in Section 5. Datasets and a reference implementation of node2vec are available on the 

project page: http://snap.stanford.edu/node2vec.

2. RELATED WORK

Feature engineering has been extensively studied by the machine learning community under 

various headings. In networks, the conventional paradigm for generating features for nodes 

is based on feature extraction techniques which typically involve some seed hand-crafted 

features based on network properties [8, 11]. In contrast, our goal is to automate the whole 

process by casting feature extraction as a representation learning problem in which case we 

do not require any hand-engineered features.

Unsupervised feature learning approaches typically exploit the spectral properties of various 

matrix representations of graphs, especially me Laplacian and the adjacency matrices. Under 

this linear algebra perspective, these methods can be viewed as dimensionality reduction 

techniques. Several linear (e.g., PCA) and non-linear (e.g., IsoMap) dimensionality 

reduction techniques have been proposed [3, 27, 30, 35]. These methods suffer from both 

computational and statistical performance drawbacks. In terms of computational efficiency, 

eigendecomposition of a data matrix is expensive unless the solution quality is significantly 

compromised with approximations, and hence, these methods are hard to scale to large 

networks. Secondly, these methods optimize for objectives that are not robust to the diverse 

patterns observed in networks (such as homophily and structural equivalence) and make 
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assumptions about the relationship between the underlying network structure and the 

prediction task. For instance, spectral clustering makes a strong homophily assumption that 

graph cuts will be useful for classification [29]. Such assumptions are reasonable in many 

scenarios, but unsatisfactory in effectively generalizing across diverse networks.

Recent advancements in representational learning for natural language processing opened 

new ways for feature learning of discrete objects such as words. In particular, the Skip-gram 

model [21] aims to learn continuous feature representations for words by optimizing a 

neighborhood preserving likelihood objective. The algorithm proceeds as follows: It scans 

over the words of a document, and for every word it aims to embed it such that the word’s 

features can predict nearby words (i.e., words inside some context window). The word 

feature representations are learned by optmizing the likelihood objective using SGD with 

negative sampling [22]. The Skip-gram objective is based on the distributional hypothesis 

which states that words in similar contexts tend to have similar meanings [9]. That is, similar 

words tend to appear in similar word neighborhoods.

Inspired by the Skip-gram model, recent research established an analogy for networks by 

representing a network as a “document” [24, 28]. The same way as a document is an ordered 

sequence of words, one could sample sequences of nodes from the underlying network and 

turn a network into a ordered sequence of nodes. However, there are many possible sampling 

strategies for nodes, resulting in different learned feature representations. In fact, as we shall 

show, there is no clear winning sampling strategy that works across all networks and all 

prediction tasks. This is a major shortcoming of prior work which fail to offer any flexibility 

in sampling of nodes from a network [24, 28]. Our algorithm node2vec overcomes this 

limitation by designing a flexible objective that is not tied to a particular sampling strategy 

and provides parameters to tune the explored search space (see Section 3).

Finally, for both node and edge based prediction tasks, there is a body of recent work for 

supervised feature learning based on existing and novel graph-specific deep network 

architectures [15, 16, 17, 31, 39]. These architectures directly minimize the loss function for 

a downstream prediction task using several layers of non-linear transformations which 

results in high accuracy, but at the cost of scalability due to high training time requirements.

3. FEATURE LEARNING FRAMEWORK

We formulate feature learning in networks as a maximum likelihood optimization problem. 

Let G = (V, E) be a given network. Our analysis is general and applies to any (un)directed, 

(un)weighted network. Let f : V → ℝd be the mapping function from nodes to feature 

representaions we aim to learn for a downstream prediction task. Here d is a parameter 

specifying the number of dimensions of our feature representation. Equivalently, f is a 

matrix of size |V| × d parameters. For every source node u ∈ V, we define NS (u) ⊂ V as a 

network neighborhood of node u generated through a neighborhood sampling strategy S.

We proceed by extending the Skip-gram architecture to networks [21, 24]. We seek to 

optimize the following objective function, which maximizes the log-probability of observing 

Grover and Leskovec Page 5

KDD. Author manuscript; available in PMC 2016 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a network neighborhood NS(u) for a node u conditioned on its feature representation, given 

by f:

(1)

In order to make the optimization problem tractable, we make two standard assumptions:

• Conditional independence. We factorize the likelihood by assuming that 

the likelihood of observing a neighborhood node is independent of 

observing any other neighborhood node given the feature representation of 

the source:

• Symmetry in feature space. A source node and neighborhood node have a 

symmetric effect over each other in feature space. Accordingly, we model 

the conditional likelihood of every source-neighborhood node pair as a 

softmax unit parametrized by a dot product of their features:

With the above assumptions, the objective in Eq. 1 simplifies to:

(2)

The per-node partition function, , is expensive to compute for 

large networks and we approximate it using negative sampling [22]. We optimize Eq. 2 

using stochastic gradient ascent over the model parameters defining the features f.

Feature learning methods based on the Skip-gram architecture have been originally 

developed in the context of natural language [21]. Given the linear nature of text, the notion 

of a neighborhood can be naturally defined using a sliding window over consecutive words. 

Networks, however, are not linear, and thus a richer notion of a neighborhood is needed. To 

resolve this issue, we propose a randomized procedure that samples many different 

neighborhoods of a given source node u. The neighborhoods NS(u) are not restricted to just 

immediate neighbors but can have vastly different structures depending on the sampling 

strategy S.

Grover and Leskovec Page 6

KDD. Author manuscript; available in PMC 2016 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.1 Classic search strategies

We view the problem of sampling neighborhoods of a source node as a form of local search. 

Figure 1 shows a graph, where given a source node u we aim to generate (sample) its 

neighborhood NS(u). Importantly, to be able to fairly compare different sampling strategies 

S, we shall constrain the size of the neighborhood set NS to k nodes and then sample 

multiple sets for a single node u. Generally, there are two extreme sampling strategies for 

generating neighborhood set(s) NS of k nodes:

• Breadth-first Sampling (BFS) The neighborhood NS is restricted to 

nodes which are immediate neighbors of the source. For example, in 

Figure 1 for a neighborhood of size k = 3, BFS samples nodes s1, s2, s3.

• Depth-first Sampling (DFS) The neighborhood consists of nodes 

sequentially sampled at increasing distances from the source node. In 

Figure 1, DFS samples s4, s5, s6.

The breadth-first and depth-first sampling represent extreme scenarios in terms of the search 

space they explore leading to interesting implications on the learned representations.

In particular, prediction tasks on nodes in networks often shuttle between two kinds of 

similarities: homophily and structural equivalence [12]. Under the homophily hypothesis [7, 

36] nodes that are highly interconnected and belong to similar network clusters or 

communities should be embedded closely together (e.g., nodes s1 and u in Figure 1 belong 

to the same network community). In contrast, under the structural equivalence hypothesis 

[10] nodes that have similar structural roles in networks should be embedded closely 

together (e.g., nodes u and s6 in Figure 1 act as hubs of their corresponding communities). 

Importantly, unlike homophily, structural equivalence does not emphasize connectivity; 

nodes could be far apart in the network and still have the same structural role. In real-world, 

these equivalence notions are not exclusive; networks commonly exhibit both behaviors 

where some nodes exhibit homophily while others reflect structural equivalence.

We observe that BFS and DFS strategies play a key role in producing representations that 

reflect either of the above equivalences. In particular, the neighborhoods sampled by BFS 

lead to embeddings that correspond closely to structural equivalence. Intuitively, we note 

that in order to ascertain structural equivalence, it is often sufficient to characterize the local 

neighborhoods accurately. For example, structural equivalence based on network roles such 

as bridges and hubs can be inferred just by observing the immediate neighborhoods of each 

node. By restricting search to nearby nodes, BFS achieves this characterization and obtains a 

microscopic view of the neighborhood of every node. Additionally, in BFS, nodes in the 

sampled neighborhoods tend to repeat many times. This is also important as it reduces the 

variance in characterizing the distribution of 1-hop nodes with respect the source node. 

However, a very small portion of the graph is explored for any given k.

The opposite is true for DFS which can explore larger parts of the network as it can move 

further away from the source node u (with sample size k being fixed). In DFS, the sampled 

nodes more accurately reflect a macro-view of the neighborhood which is essential in 

inferring communities based on homophily. However, the issue with DFS is that it is 
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important to not only infer which node-to-node dependencies exist in a network, but also to 

characterize the exact nature of these dependencies. This is hard given we have a constrain 

on the sample size and a large neighborhood to explore, resulting in high variance. Secondly, 

moving to much greater depths leads to complex dependencies since a sampled node may be 

far from the source and potentially less representative.

3.2 node2vec

Building on the above observations, we design a flexible neighborhood sampling strategy 

which allows us to smoothly interpolate between BFS and DFS. We achieve this by 

developing a flexible biased random walk procedure that can explore neighborhoods in a 

BFS as well as DFS fashion.

3.2.1 Random Walks—Formally, given a source node u, we simulate a random walk of 

fixed length l. Let ci denote the ith node in the walk, starting with c0 = u. Nodes ci are 

generated by the following distribution:

where πvx is the unnormalized transition probability between nodes v and x, and Z is the 

normalizing constant.

3.2.2 Search bias α—The simplest way to bias our random walks would be to sample the 

next node based on the static edge weights wvx i.e., πvx = wvx. (In case of unweighted 

graphs wvx = 1.) However, this does not allow us to account for the network structure and 

guide our search procedure to explore different types of network neighborhoods. 

Additionally, unlike BFS and DFS which are extreme sampling paradigms suited for 

structural equivalence and homophily respectively, our random walks should accommodate 

for the fact that these notions of equivalence are not competing or exclusive, and real-world 

networks commonly exhibit a mixture of both.

We define a 2nd order random walk with two parameters p and q which guide the walk: 

Consider a random walk that just traversed edge (t, v) and now resides at node v (Figure 2). 

The walk now needs to decide on the next step so it evaluates the transition probabilities πvx 

on edges (v, x) leading from v. We set the unnormalized transition probability to πvx = 

αpq(t, x) · wvx, where

and dtx denotes the shortest path distance between nodes t and x. Note that dtx must be one 

of {0, 1, 2}, and hence, the two parameters are necessary and sufficient to guide the walk.
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Intuitively, parameters p and q control how fast the walk explores and leaves the 

neighborhood of starting node u. In particular, the parameters allow our search procedure to 

(approximately) interpolate between BFS and DFS and thereby reflect an affinity for 

different notions of node equivalences.

Return parameter, p: Parameter p controls the likelihood of immediately revisiting a node 

in the walk. Setting it to a high value (> max(q, 1)) ensures that we are less likely to sample 

an already-visited node in the following two steps (unless the next node in the walk had no 

other neighbor). This strategy encourages moderate exploration and avoids 2-hop 

redundancy in sampling. On the other hand, if p is low (< min(q, 1)), it would lead the walk 

to backtrack a step (Figure 2) and this would keep the walk “local” close to the starting node 

u.

In-out parameter, q: Parameter q allows the search to differentiate between “inward” and 

“outward” nodes. Going back to Figure 2, if q > 1, the random walk is biased towards nodes 

close to node t. Such walks obtain a local view of the underlying graph with respect to the 

start node in the walk and approximate BFS behavior in the sense that our samples comprise 

of nodes within a small locality.

In contrast, if q < 1, the walk is more inclined to visit nodes which are further away from the 

node t. Such behavior is reflective of DFS which encourages outward exploration. However, 

an essential difference here is that we achieve DFS-like exploration within the random walk 

framework. Hence, the sampled nodes are not at strictly increasing distances from a given 

source node u, but in turn, we benefit from tractable preprocessing and superior sampling 

efficiency of random walks. Note that by setting πv,x to be a function of the proceeding node 

in the walk t, the random walks are 2nd order Markovian.

Benefits of random walks: There are several benefits of random walks over pure BFS/DFS 

approaches. Random walks are computationally efficient in terms of both space and time 

requirements. The space complexity to store the immediate neighbors of every node in the 

graph is O(|E|). For 2nd order random walks, it is helpful to store the interconnections 

between the neighbors of every node, which incurs a space complexity of O(a2|V|) where a 
is the average degree of the graph and is usually small for real-world networks. The other 

key advantage of random walks over classic search-based sampling strategies is its time 

complexity. In particular, by imposing graph connectivity in the sample generation process, 

random walks provide a convenient mechanism to increase the effective sampling rate by 

reusing samples across different source nodes. By simulating a random walk of length l > k 
we can generate k samples for l − k nodes at once due to the Markovian nature of the 

random walk. Hence, our effective complexity is  per sample. For example, in 

Figure 1 we sample a random walk {u, s4, s5, s6, s8, s9} of length l = 6, which results in 

NS(u) = {s4, s5, s6}, NS(s4) = {s5, s6, s8} and NS(s5) = {s6, s8, s9}. Note that sample reuse 

can introduce some bias in the overall procedure. However, we observe that it greatly 

improves the efficiency.
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3.2.3 The node2vec algorithm

Algorithm 1

The node2vec algorithm.

LearnFeatures (Graph G = (V, E, W). Dimensions d, Walks per node r, Walk length l, Context size k, Return p, In-out 
q)

 π = PreprocessModifiedWeights(G, p, q)

 G′ = (V, E, π)

 Initialize walks to Empty

 for iter = 1 to r do

  for all nodes u ∈ V do

   walk = node2vec Walk(G′, u, l)

   Append walk to walks

 f = StochasticGradientDescent(k, d walks)

 return f

node2vecWalk (Graph G′ = (V, E, π), Start node u, Length l)

 Inititalize walk to [u]

 for walk_iter = 1 to l do

  curr = walk[−1]

  Vcurr = GetNeighbors(curr, G′)

  s = AliasSample(Vcurr, π)

  Append s to walk

 return walk

The pseudocode for node2vec, is given in Algorithm 1. In any random walk, there is an 

implicit bias due to the choice of the start node u. Since we learn representations for all 

nodes, we offset this bias by simulating r random walks of fixed length l starting from every 
node. At every step of the walk, sampling is done based on the transition probabilities πvx. 

The transition probabilities πvx for the 2nd order Markov chain can be precomputed and 

hence, sampling of nodes while simulating the random walk can be done efficiently in O(1) 

time using alias sampling. The three phases of node2vec, i.e., preprocessing to compute 

transition probabilities, random walk simulations and optimization using SGD, are executed 

sequentially. Each phase is parallelizable and executed asynchronously, contributing to the 

overall scalability of node2vec.

node2vec is available at: http://snap.stanford.edu/node2vec.

3.3 Learning edge features

The node2vec algorithm provides a semi-supervised method to learn rich feature 

representations for nodes in a network. However, we are often interested in prediction tasks 

involving pairs of nodes instead of individual nodes. For instance, in link prediction, we 

predict whether a link exists between two nodes in a network. Since our random walks are 

naturally based on the connectivity structure between nodes in the underlying network, we 

extend them to pairs of nodes using a bootstrapping approach over the feature 

representations of the individual nodes.
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Given two nodes u and v, we define a binary operator ο over the corresponding feature 

vectors f(u) and f(v) in order to generate a representation g(u, v) such that g : V × V → ℝd′ 
where d′ is the representation size for the pair (u, v). We want our operators to be generally 

defined for any pair of nodes, even if an edge does not exist between the pair since doing so 

makes the representations useful for link prediction where our test set contains both true and 

false edges (i.e., do not exist). We consider several choices for the operator ο such that d′ = 
d which are summarized in Table 1.

4. EXPERIMENTS

The objective in Eq. 2 is independent of any downstream task and the flexibility in 

exploration offered by node2vec lends the learned feature representations to a wide variety 

of network analysis settings discussed below.

4.1 Case Study: Les Misérables network

In Section 3.1 we observed that BFS and DFS strategies represent extreme ends on the 

spectrum of embedding nodes based on the principles of homophily (i.e., network 

communities) and structural equivalence (i.e., structural roles of nodes). We now aim to 

empirically demonstrate this fact and show that node2vec in fact can discover embeddings 

that obey both principles.

We use a network where nodes correspond to characters in the novel Les Misérables [13] 

and edges connect coappearing characters. The network has 77 nodes and 254 edges. We set 

d = 16 and run node2vec to learn feature representation for every node in the network. The 

feature representations are clustered using k-means. We then visualize the original network 

in two dimensions with nodes now assigned colors based on their clusters.

Figure 3(top) shows the example when we set p = 1, q = 0.5. Notice how regions of the 

network (i.e., network communities) are colored using the same color. In this setting 

node2vec discovers clusters/communities of characters that frequently interact with each 

other in the major sub-plots of the novel. Since the edges between characters are based on 

coappearances, we can conclude this characterization closely relates with homophily.

In order to discover which nodes have the same structural roles we use the same network but 

set p = 1, q = 2, use node2vec to get node features and then cluster the nodes based on the 

obtained features. Here node2vec obtains a complementary assignment of node to clusters 

such that the colors correspond to structural equivalence as illustrated in Figure 3(bottom). 

For instance, node2vec embeds blue-colored nodes close together. These nodes represent 

characters that act as bridges between different sub-plots of the novel. Similarly, the yellow 

nodes mostly represent characters that are at the periphery and have limited interactions. 

One could assign alternate semantic interpretations to these clusters of nodes, but the key 

takeaway is that node2vec is not tied to a particular notion of equivalence. As we show 

through our experiments, these equivalence notions are commonly exhibited in most real-

world networks and have a significant impact on the performance of the learned 

representations for prediction tasks.
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4.2 Experimental setup

Our experiments evaluate the feature representations obtained through node2vec on standard 

supervised learning tasks: multi-label classification for nodes and link prediction for edges. 

For both tasks, we evaluate the performance of node2vec against the following feature 

learning algorithms:

• Spectral clustering [29]: This is a matrix factorization approach in which 

we take the top d eigenvectors of the normalized Laplacian matrix of 

graph G as the feature vector representations for nodes.

• DeepWalk [24]: This approach learns d-dimensional feature 

representations by simulating uniform random walks. The sampling 

strategy in DeepWalk can be seen as a special case of node2vec with p = 1 

and q = 1.

• LINE [28]: This approach learns d-dimensional feature representations in 

two separate phases. In the first phase, it learns d/2 dimensions by BFS-

style simulations over immediate neighbors of nodes. In the second phase, 

it learns the next d/2 dimensions by sampling nodes strictly at a 2-hop 

distance from the source nodes.

We exclude other matrix factorization approaches which have already been shown to be 

inferior to DeepWalk [24]. We also exclude a recent approach, GraRep [6], that generalizes 

LINE to incorporate information from network neighborhoods beyond 2-hops, but is unable 

to efficiently scale to large networks.

In contrast to the setup used in prior work for evaluating sampling-based feature learning 

algorithms, we generate an equal number of samples for each method and then evaluate the 

quality of the obtained features on the prediction task. In doing so, we discount for 

performance gain observed purely because of the implementation language (C/C++/Python) 

since it is secondary to the algorithm. Thus, in the sampling phase, the parameters for 

DeepWalk, LINE and node2vec are set such that they generate equal number of samples at 

runtime. As an example, if  is the overall sampling budget, then the node2vec parameters 

satisfy . In the optimization phase, all these benchmarks optimize using SGD 

with two key differences that we correct for. First, DeepWalk uses hierarchical sampling to 

approximate the softmax probabilities with an objective similar to the one use by node2vec. 

However, hierarchical softmax is inefficient when compared with negative sampling [22]. 

Hence, keeping everything else the same, we switch to negative sampling in DeepWalk 

which is also the de facto approximation in node2vec and LINE. Second, both node2vec and 

DeepWalk have a parameter for the number of context neighborhood nodes to optimize for 

and the greater the number, the more rounds of optimization are required. This parameter is 

set to unity for LINE, but since LINE completes a single epoch quicker man other 

approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typical values used for DeepWalk 

and LINE. Specifically, we set d = 128, r = 10, l = 80, k = 10, and the optimization is run for 

a single epoch. We repeat our experiments for 10 random seed initializations, and our results 

Grover and Leskovec Page 12

KDD. Author manuscript; available in PMC 2016 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are statistically significant with a p-value of less than 0.01. The best in-out and return 

hyperparameters were learned using 10-fold cross-validation on 10% labeled data with a 

grid search over p, q ∈ {0.25, 0.50, 1, 2, 4}.

4.3 Multi-label classification

In the multi-label classification setting, every node is assigned one or more labels from a 

finite set ℒ. During the training phase, we observe a certain fraction of nodes and all their 

labels. The task is to predict the labels for the remaining nodes. This is a challenging task 

especially if ℒ is large. We utilize the following datasets:

• BlogCatalog [38]: This is a network of social relationships of the bloggers 

listed on the BlogCatalog website. The labels represent blogger interests 

inferred through the metadata provided by the bloggers. The network has 

10,312 nodes, 333,983 edges, and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph of the PPI 

network for Homo Sapiens. The subgraph corresponds to the graph 

induced by nodes for which we could obtain labels from the hallmark gene 

sets [19] and represent biological states. The network has 3,890 nodes, 

76,584 edges, and 50 different labels.

• Wikipedia [20]: This is a cooccurrence network of words appearing in the 

first million bytes of the Wikipedia dump. The labels represent the Part-of-

Speech (POS) tags inferred using the Stanford POS-Tagger [32]. The 

network has 4,777 nodes, 184,812 edges, and 40 different labels.

All these networks exhibit a fair mix of homophilic and structural equivalences. For 

example, we expect the social network of bloggers to exhibit strong homophily-based 

relationships; however, mere might also be some “familiar strangers”, i.e., bloggers that do 

not interact but share interests and hence are structurally equivalent nodes. The biological 

states of proteins in a protein-protein interaction network also exhibit both types of 

equivalences. For example, they exhibit structural equivalence when proteins perform 

functions complementary to those of neighboring proteins, and at other times, they organize 

based on homophily in assisting neighboring proteins in performing similar functions. The 

word cooccurence network is fairly dense, since edges exist between words cooccuring in a 

2-length window in the Wikipedia corpus. Hence, words having the same POS tags are not 

hard to find, lending a high degree of homophily. At the same time, we expect some 

structural equivalence in the POS tags due to syntactic grammar patterns such as nouns 

following determiners, punctuations succeeding nouns etc.

Experimental results—The node feature representations are input to a one-vs-rest 

logistic regression classifier with L2 regularization. The train and test data is split equally 

over 10 random instances. We use the Macro-F1 scores for comparing performance in Table 

2 and the relative performance gain is over the closest benchmark. The trends are similar for 

Micro-F1 and accuracy and are not shown.
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From the results, it is evident we can see how the added flexibility in exploring 

neighborhoods allows node2vec to outperform the other benchmark algorithms. In 

BlogCatalog, we can discover the right mix of homophily and structural equivalence by 

setting parameters p and q to low values, giving us 22.3% gain over DeepWalk and 229.2% 

gain over LINE in Macro-F1 scores. LINE showed worse performance than expected, which 

can be explained by its inability to reuse samples, a feat that can be easily done using the 

random walk methods. Even in our other two networks, where we have a mix of 

equivalences present, the semi-supervised nature of node2vec can help us infer the 

appropriate degree of exploration necessary for feature learning. In the case of PPI network, 

the best exploration strategy (p = 4, q = 1) turns out to be virtually indistinguishable from 

DeepWalk’s uniform (p = 1, q = 1) exploration giving us only a slight edge over DeepWalk 

by avoiding redudancy in already visited nodes through a high p value, but a convincing 

23.8% gain over LINE in Macro-F1 scores. However, in general, the uniform random walks 

can be much worse than the exploration strategy learned by node2vec. As we can see in the 

Wikipedia word cooccurrence network, uniform walks cannot guide the search procedure 

towards the best samples and hence, we achieve a gain of 21.8% over DeepWalk and 33.2% 

over LINE.

For a more fine-grained analysis, we also compare performance while varying the train-test 

split from 10% to 90%, while learning parameters p and q on 10% of the data as before. For 

brevity, we summarize the results for the Micro-F1 and Macro-F1 scores graphically in 

Figure 4. Here we make similar observations. All methods significantly outperform Spectral 

clustering, DeepWalk outperforms LINE, node2vec consistently outperforms LINE and 

achieves large improvement over DeepWalk across domains. For example, we achieve the 

biggest improvement over DeepWalk of 26.7% on BlogCatalog at 70% labeled data. In the 

worst case, the search phase has little bearing on learned representations in which case 

node2vec is equivalent to DeepWalk. Similarly, the improvements are even more striking 

when compared to LINE, where in addition to drastic gain (over 200%) on BlogCatalog, we 

observe high magnitude improvements upto 41.1% on other datasets such as PPI while 

training on just 10% labeled data.

4.4 Parameter sensitivity

The node2vec algorithm involves a number of parameters and in Figure 5a, we examine how 

the different choices of parameters affect the performance of node2vec on the BlogCatalog 

dataset using a 50–50 split between labeled and unlabeled data. Except for the parameter 

being tested, all other parameters assume default values. The default values for p and q are 

set to unity.

We measure the Macro-F1 score as a function of parameters p and q. The performance of 

node2vec improves as the in-out parameter p and the return parameter q decrease. This 

increase in performance can be based on the homophilic and structural equivalences we 

expect to see in BlogCatalog. While a low q encourages outward exploration, it is balanced 

by a low p which ensures that the walk does not go too far from the start node.

We also examine how the number of features d and the node’s neighborhood parameters 

(number of walks r, walk length l, and neighborhood size k) affect the performance. We 
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observe that performance tends to saturate once the dimensions of the representations 

reaches around 100. Similarly, we observe that increasing the number and length of walks 

per source improves performance, which is not surprising since we have a greater overall 

sampling budget  to learn representations. Both these parameters have a relatively high 

impact on the performance of the method. Interestingly, the context size, k also improves 

performance at the cost of increased optimization time. However, the performance 

differences are not that large in this case.

4.5 Perturbation Analysis

For many real-world networks, we do not have access to accurate information about the 

network structure. We performed a perturbation study where we analyzed the performance 

of node2vec for two imperfect information scenarios related to the edge structure in the 

BlogCatalog network. In the first scenario, we measure performace as a function of the 

fraction of missing edges (relative to the full network). The missing edges are chosen 

randomly, subject to the constraint that the number of connected components in the network 

remains fixed. As we can see in Figure 5b(top), the decrease in Macro-F1 score as the 

fraction of missing edges increases is roughly linear with a small slope. Robustness to 

missing edges in the network is especially important in cases where the graphs are evolving 

over time (e.g., citation networks), or where network construction is expensive (e.g., 
biological networks).

In the second perturbation setting, we have noisy edges between randomly selected pairs of 

nodes in the network. As shown in Figure 5b(bottom), the performance of node2vec declines 

slightly faster initially when compared with the setting of missing edges, however, the rate 

of decrease in Macro-F1 score gradually slows down over time. Again, the robustness of 

node2vec to false edges is useful in several situations such as sensor networks where the 

measurements used for constructing the network are noisy.

4.6 Scalability

To test for scalability, we learn node representations using node2vec with default parameter 

values for Erdos-Renyi graphs with increasing sizes from 100 to 1,000,000 nodes and 

constant average degree of 10. In Figure 6, we empirically observe that node2vec scales 

linearly with increase in number of nodes generating representations for one million nodes 

in less than four hours. The sampling procedure comprises of preprocessing for computing 

transition probabilities for our walk (negligibly small) and simulation of random walks. The 

optimization phase is made efficient using negative sampling [22] and asynchronous SGD 

[26].

Many ideas from prior work serve as useful pointers in making the sampling procedure 

computationally efficient. We showed how random walks, also used in DeepWalk [24], 

allow the sampled nodes to be reused as neighborhoods for different source nodes appearing 

in the walk. Alias sampling allows our walks to generalize to weighted networks, with little 

preprocessing [28]. Though we are free to set the search parameters based on the underlying 

task and domain at no additional cost, learning the best settings of our search parameters 

adds an overhead. However, as our experiments confirm, this overhead is minimal since 
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node2vec is semi-supervised and hence, can learn these parameters efficiently with very 

little labeled data.

4.7 Link prediction

In link prediction, we are given a network with a certain fraction of edges removed, and we 

would like to predict these missing edges. We generate the labeled dataset of edges as 

follows: To obtain positive examples, we remove 50% of edges chosen randomly from the 

network while ensuring that the residual network obtained after the edge removals is 

connected, and to generate negative examples, we randomly sample an equal number of 

node pairs from the network which have no edge connecting them.

Since none of feature learning algorithms have been previously used for link prediction, we 

additionally evaluate node2vec against some popular heuristic scores that achieve good 

performance in link prediction. The scores we consider are defined in terms of the 

neighborhood sets of the nodes constituting the pair (see Table 3). We test our benchmarks 

on the following datasets:

• Facebook [14]: In the Facebook network, nodes represent users, and edges 

represent a friendship relation between any two users. The network has 

4,039 nodes and 88,234 edges.

• Protein-Protein Interactions (PPI) [5]: In the PPI network for Homo 

Sapiens, nodes represent proteins, and an edge indicates a biological 

interaction between a pair of proteins. The network has 19,706 nodes and 

390,633 edges.

• arXiv ASTRO-PH [14]: This is a collaboration network generated from 

papers submitted to the e-print arXiv where nodes represent scientists, and 

an edge is present between two scientists if they have collaborated in a 

paper. The network has 18,722 nodes and 198,110 edges.

Experimental results—We summarize our results for link prediction in Table 4. The best 

p and q parameter settings for each node2vec entry are omitted for ease of presentation. A 

general observation we can draw from the results is that the learned feature representations 

for node pairs significantly outperform the heuristic benchmark scores with node2vec 
achieving the best AUC improvement on 12.6% on the arXiv dataset over the best 

performing baseline (Adamic-Adar [1]).

Amongst the feature learning algorithms, node2vec outperforms both Deep Walk and LINE 

in all networks with gain up to 3.8% and 6.5% respectively in the AUC scores for the best 

possible choices of the binary operator for each algorithm. When we look at operators 

individually (Table 1), node2vec outperforms DeepWalk and LINE barring a couple of cases 

involving the Weighted-L1 and Weighted-L2 operators in which LINE performs better. 

Overall, the Hadamard operator when used with node2vec is highly stable and gives the best 

performance on average across all networks.
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5. DISCUSSION AND CONCLUSION

In this paper, we studied feature learning in networks as a search-based optimization 

problem. This perspective gives us multiple advantages. It can explain classic search 

strategies on the basis of the exploration-exploitation trade-off. Additionally, it provides a 

degree of interpretability to the learned representations when applied for a prediction task. 

For instance, we observed that BFS can explore only limited neighborhoods. This makes 

BFS suitable for characterizing structural equivalences in network that rely on the immediate 

local structure of nodes. On the other hand, DFS can freely explore network neighborhoods 

which is important in discovering homophilous communities at the cost of high variance.

Both DeepWalk and LINE can be seen as rigid search strategies over networks. DeepWalk 

[24] proposes search using uniform random walks. The obvious limitation with such a 

strategy is that it gives us no control over the explored neighborhoods. LINE [28] proposes 

primarily a breadth-first strategy, sampling nodes and optimizing the likelihood 

independently over only 1-hop and 2-hop neighbors. The effect of such an exploration is 

easier to characterize, but it is restrictive and provides no flexibility in exploring nodes at 

further depths. In contrast, the search strategy in node2vec is both flexible and controllable 

exploring network neighborhoods through parameters p and q. While these search 

parameters have intuitive interpretations, we obtain best results on complex networks when 

we can learn them directly from data. From a practical standpoint, node2vec is scalable and 

robust to perturbations.

We showed how extensions of node embeddings to link prediction outperform popular 

heuristic scores designed specifically for this task. Our method permits additional binary 

operators beyond those listed in Table 1. As a future work, we would like to explore the 

reasons behind the success of Hadamard operator over others, as well as establish 

interpretable equivalence notions for edges based on the search parameters. Future 

extensions of node2vec could involve networks with special structure such as heterogeneous 

information networks, networks with explicit domain features for nodes and edges and 

signed-edge networks. Continuous feature representations are the backbone of many deep 

learning algorithms, and it would be interesting to use node2vec representations as building 

blocks for end-to-end deep learning on graphs.
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Figure 1. 
BFS and DFS search strategies from node u (k = 3).
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Figure 2. 
Illustration of the random walk procedure in node2vec. The walk just transitioned from t to v 
and is now evaluating its next step out of node v. Edge labels indicate search biases α.
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Figure 3. 
Complementary visualizations of Les Misérables coappearance network generated by 

node2vec with label colors reflecting homophily (top) and structural equivalence (bottom).
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Figure 4. 
Performance evaluation of different benchmarks on varying the amount of labeled data used 

for training. The x axis denotes the fraction of labeled data, whereas the y axis in the top and 

bottom rows denote the Micro-F1 and Macro-F1 scores respectively. DeepWalk and 

node2vec give comparable performance on PPL In all other networks, across all fractions of 

labeled data node2vec performs best.

Grover and Leskovec Page 23

KDD. Author manuscript; available in PMC 2016 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
(a). Parameter sensitivity (b). Perturbation analysis for multilabel classification on the 

BlogCatalog network.
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Figure 6. 
Scalability of node2vec on Erdos-Renyi graphs with an average degree of 10.
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Table 1

Choice of binary operators ο for learning edge features. The definitions correspond to the ith component of 

g(u, v).

Operator Symbol Definition

Average ⊞

Hadamard ⊡

Weighted-L1

Weighted-L2 ‖·‖2
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Table 2

Macro-F1 scores for multilabel classification on BlogCatalog, PPI (Homo sapiens) and Wikipedia word 

cooccurrence networks with 50% of the nodes labeled for training.

Algorithm Dataset

BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395

DeepWalk 0.2110 0.1768 0.1274

LINE 0.0784 0.1447 0.1164

node2vec 0.2581 0.1791 0.1552

node2vec settings (p,q) 0.25, 0.25 4, 1 4,0.5

Gain of node2vec [%] 22.3 1.3 21.8
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Table 3

Link prediction heuristic scores for node pair (u, v) with immediate neighbor sets  and 

respectively.

Score Definition

Common Neighbors

Jaccard’s Coefficient

Adamic-Adar Score

Preferential Attachment
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Table 4

Area Under Curve (AUC) scores for link prediction. Comparison with popular baselines and embedding based 

methods bootstapped using binary operators: (a) Average, (b) Hadamard, (c) Weighted-L1, and (d) Weighted-

L2 (See Table 1 for definitions).

Op Algorithm Dataset

Facebook PPI arXiv

Common Neighbors 0.8100 0.7142 0.8153

Jaccard’s Coefficient 0.8880 0.7018 0.8067

Adamic-Adar 0.8289 0.7126 0.8315

Pref. Attachment 0.7137 0.6670 0.6996

Spectral Clustering 0.5960 0.6588 0.5812

(a) DeepWalk 0.7238 0.6923 0.7066

LINE 0.7029 0.6330 0.6516

node2vec 0.7266 0.7543 0.7221

Spectral Clustering 0.6192 0.4920 0.5740

(b) DeepWalk 0.9680 0.7441 0.9340

LINE 0.9490 0.7249 0.8902

node2vec 0.9680 0.7719 0.9366

Spectral Clustering 0.7200 0.6356 0.7099

(c) DeepWalk 0.9574 0.6026 0.8282

LINE 0.9483 0.7024 0.8809

node2vec 0.9602 0.6292 0.8468

Spectral Clustering 0.7107 0.6026 0.6765

(d) DeepWalk 0.9584 0.6118 0.8305

LINE 0.9460 0.7106 0.8862

node2vec 0.9606 0.6236 0.8477
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